3D-printed Surgical Tools


I will talk about the upsurge of 3D-printed surgical tools, their benefits and possible problems as well as how we at Versoteq can help you get going easily. It is a rising industry that will cut costs while giving benefits through mass customization and raising patient safety.
What Is It?

As noted before in the blog ( 3D-printing is a cost effective additive manufacturing style that can create almost anything within a few minutes to few hours. Almost anything can be printed from plastics to living tissue or bacteria. The tools made this way can be one-off and made specifically for each surgery or case and thus we remove the risk of transferring bacteria and virii. While these transferences are rare, nearly all hospitals and surgical units do suffer from outbreaks of MRSA and other such bacteria at times and because these bugs are extremely strong they are difficult to get rid of. While tools can be sanitized, sometimes the strains are too powerful. When you buy your tools new for each surgery the costs go up, however you can create the perfect tools for the job for lot less and this way perform the operations more easily and safer while cutting the costs the units will benefit.

Naturally surgical tools aren’t all the tools in healthcare. You can create dental tools but also splints, casts, wheelchairs and just about anything you need.

Surgical Tools

These tools are an emergent technology in this field while implants and medical models are quite common place. For example, Dr. Ignacio Díaz de Tuesta created many surgical tools that would not be able to be made with normal methods.

These tools are plastic and can be either be disposed of or reused after sterilization.

Versoteq offers mass-customization and customization services and we love working with the people in the field.

Simulation Aids

For example University of Rochester has developed a surgical simulator (

What this does is give the surgeons the ability to do dry runs before major and difficult operations, ability to train in realistic scenarios without putting the patients’ health at risk. This too, again, cuts costs as well as raises patient safety.

At the same time, it revolutionizes medical schools. Because of my own medical history, I have a lot of experiences with surgeries, as a patient and as a subject of study. I would love to see this technology becoming prevalent in modern schools.

Like with the aids, we can help you create bespoke surgical implants from MRI and other sources. These implants will be near perfect and safe to use. As the industry stands now, most of the implants used are generic and because of this there can be problems with the surgery anywhere from fit and finish to unforeseen problems. When everything is bespoke and designed for only one person you can often bypass these problems and get the best results possible.

One of the frontrunners for this is Dr. Palutsis in Ohio.

While these are all interesting, like with most all additive manufacturing processes the near future reads like science fiction though it is science fact already.


Organ transplants are coming soon, from kidneys to hearts to anything conceivable can be done.

Nicholas Cohrs, leading a Swiss team, has created a working 3D-printed human heart that is fully functioning. Naturally it will need more time in development, but soon we will be able to forget the organ donor waiting lists and create fully functioning organs from the patient’s own DNA. This will help with the post procedural medicine regimens and will save money and more importantly lives. As we wait for this, please fill out an organ donor card and keep it with you. You will save lives.